Алгоритмы сжатия изображений


Фрактальный алгоритм - часть 6


Коэффициенты — это (1) координаты найденного блока, (2) число от 0 до 7, характеризующее преобразование симметрии (поворот, отражение блока), и (3) сдвиг по яркости для этой пары блоков. Сдвиг по яркости вычисляется как:

,

где rij

— значения пикселов рангового блока (R), а dij

— значения пикселов доменного блока (D). При этом мера считается как:

.

Мы не вычисляем квадратного корня из L2

меры и не делим ее на n, поскольку данные преобразования монотонны и не помешают нам найти экстремум, однако мы сможем выполнять на две операции меньше для каждого блока.

Посчитаем количество операций, необходимых нам для сжатия изображения в градациях серого 256 цветов 512х512 пикселов при размере блока 8 пикселов:


 

Часть программы

Число операций
for (all domain blocks) 4096 (=512/8 x 512/8)
for (all range blocks) +


symmetry transformation 

492032 (=(512/2-8)* (512/2-8)*8)
Вычисление qи d(R,D) > 3*64 операций “+”

> 2*64 операций “* ”

Итог: > 3* 128.983.236.608 операций “+”

> 2* 128.983.236.608 операций “*”

Таким образом, нам удалось уменьшить число операций алгоритма компрессии до вполне вычисляемых (пусть и за несколько часов) величин.

Схема алгоритма декомпрессии изображений

Декомпрессия алгоритма фрактального сжатия чрезвычайно проста. Необходимо провести несколько итераций трехмерных аффинных преобразований, коэффициенты которых были получены на этапе компрессии.

В качестве начального может быть взято абсолютно любое изображение (например, абсолютно черное), поскольку соответствующий математический аппарат гарантирует нам сходимость последовательности изображений, получаемых в ходе итераций IFS, к неподвижному изображению (близкому к исходному). Обычно для этого достаточно 16 итераций.

Прочитаем из файла коэффициенты всех блоков;


Создадим черное изображение нужного размера;


Until(изображение не станет неподвижным){


    For(every range (R)){


        D=image->CopyBlock(D_coord_for_R);


        For(every pixel(i,j) in the block{


            Rij = 0.75Dij

+ oR;


        } //Next pixel


    } //Next block


}//Until end

Поскольку мы записывали коэффициенты для блоков Rij

(которые, как мы оговорили, в нашем частном случае являются квадратами одинакового размера) последовательно, то получается, что мы последовательно заполняем изображение по квадратам сетки разбиения использованием аффинного преобразования.

Как можно подсчитать, количество операций на один пиксел изображения в градациях серого при восстановлении необычайно мало (N операций “+”, 1 операций “* ”, где N — количество итераций, т.е. 7-16). Благодаря этому, декомпрессия изображений для фрактального алгоритма проходит быстрее декомпрессии, например, для алгоритма JPEG, в котором на точку приходится (при оптимальной реализации операций обратного ДКП и квантования) 64 операции “+” и 64 операции “? ” (без учета шагов RLE и кодирования по Хаффману!). При этом для фрактального алгоритма умножение происходит на рациональное число, одно для каждого блока. Это означает, что мы можем, во-первых, использовать целочисленную рациональную арифметику, которая существенно быстрее арифметики с плавающей точкой. Во-вторых, умножение вектора на число — более простая и быстрая операция, часто закладываемая в архитектуру процессора (процессоры SGI, Intel MMX...), чем скалярное произведение двух векторов, необходимое в случае JPEG. Для полноцветного изображения ситуация качественно не изменяется, поскольку перевод в другое цветовое пространство используют оба алгоритма.

Оценка потерь и способы их регулирования

При кратком изложении упрощенного варианта алгоритма были пропущены многие важные вопросы. Например, что делать, если алгоритм не может подобрать для какого-либо фрагмента изображения подобный ему? Достаточно очевидное решение — разбить этот фрагмент на более мелкие, и попытаться поискать для них. В то же время понятно, что эту процедуру нельзя повторять до бесконечности, иначе количество необходимых преобразований станет так велико, что алгоритм перестанет быть алгоритмом компрессии. Следовательно, мы допускаем потери в какой-то части изображения.

Для фрактального алгоритма компрессии, как и для других алгоритмов сжатия с потерями, очень важны механизмы, с помощью которых можно будет регулировать степень сжатия и степень потерь. К настоящему времени разработан достаточно большой набор таких методов. Во-первых, можно ограничить количество аффинных преобразований, заведомо обеспечив степень сжатия не ниже фиксированной величины. Во-вторых, можно потребовать, чтобы в ситуации, когда разница между обрабатываемым фрагментом и наилучшим его приближением будет выше определенного порогового значения, этот фрагмент дробился обязательно (для него обязательно заводится несколько “линз”). В-третьих, можно запретить дробить фрагменты размером меньше, допустим, четырех точек. Изменяя пороговые значения и приоритет этих условий, мы будем очень гибко управлять коэффициентом компрессии изображения в диапазоне от побитового соответствия до любой степени сжатия. Заметим, что эта гибкость будет гораздо выше, чем у ближайшего “конкурента” — алгоритма JPEG.

Характеристики фрактального алгоритма :

Коэффициенты компрессии: 2-2000 (Задается пользователем).

Класс изображений: Полноцветные 24 битные изображения или изображения в градациях серого без резких переходов цветов (фотографии). Желательно, чтобы области большей значимости (для восприятия) были более контрастными и резкими, а области меньшей значимости — неконтрастными и размытыми.

Симметричность: 100-100000

Характерные особенности: Может свободно масштабировать изображение при разархивации, увеличивая его в 2-4 раза без появления “лестничного эффекта”. При увеличении степени компрессии появляется “блочный” эффект на границах блоков в изображении.




- Начало -  - Назад -  - Вперед -