Алгоритмы сжатия изображений


Алгоритм LZW


Название алгоритм получил по первым буквам фамилий его разработчиков — Lempel, Ziv и Welch. Сжатие в нем, в отличие от RLE, осуществляется уже за счет одинаковых цепочек байт.

Алгоритм LZ

Существует довольно большое семейство LZ-подобных алгоритмов, различающихся, например, методом поиска повторяющихся цепочек. Один из достаточно простых вариантов этого алгоритма, например, предполагает, что во входном потоке идет либо пара <счетчик, смещение относительно текущей позиции>, либо просто <счетчик> “пропускаемых” байт и сами значения байтов (как во втором варианте алгоритма RLE). При разархивации для пары <счетчик, смещение> копируются <счетчик> байт из выходного массива, полученного в результате разархивации, на <смещение> байт раньше, а <счетчик> (т.е. число равное счетчику) значений “пропускаемых” байт просто копируются в выходной массив из входного потока. Данный алгоритм является несимметричным по времени, поскольку требует полного перебора буфера при поиске одинаковых подстрок. В результате нам сложно задать большой буфер из-за резкого возрастания времени компрессии. Однако потенциально построение алгоритма, в котором на <счетчик> и на <смещение> будет выделено по 2 байта (старший бит старшего байта счетчика — признак повтора строки / копирования потока), даст нам возможность сжимать все повторяющиеся подстроки размером до 32Кб в буфере размером 64Кб.

При этом мы получим увеличение размера файла в худшем случае на 32770/32768 (в двух байтах записано, что нужно переписать в выходной поток следующие 215 байт), что совсем неплохо. Максимальный коэффициент сжатия составит в пределе 8192 раза. В пределе, поскольку максимальное сжатие мы получаем, превращая 32Кб буфера в 4 байта, а буфер такого размера мы накопим не сразу. Однако, минимальная подстрока, для которой нам выгодно проводить сжатие, должна состоять в общем случае минимум из 5 байт, что и определяет малую ценность данного алгоритма. К достоинствам LZ можно отнести чрезвычайную простоту алгоритма декомпрессии.

Упражнение: Предложите другой вариант алгоритма LZ, в котором на пару <счетчик, смещение> будет выделено 3 байта, и подсчитайте основные характеристики своего алгоритма.

Алгоритм LZW

Рассматриваемый нами ниже вариант алгоритма будет использовать дерево для представления и хранения цепочек. Очевидно, что это достаточно сильное ограничение на вид цепочек, и далеко не все одинаковые подцепочки в нашем изображении будут использованы при сжатии. Однако в предлагаемом алгоритме выгодно сжимать даже цепочки, состоящие из 2 байт.

Процесс сжатия выглядит достаточно просто. Мы считываем последовательно символы входного потока и проверяем, есть ли в созданной нами таблице строк такая строка. Если строка есть, то мы считываем следующий символ, а если строки нет, то мы заносим в поток код для предыдущей найденной строки, заносим строку в таблицу и начинаем поиск снова.

Функция InitTable() очищает таблицу и помещает в нее все строки единичной длины.

InitTable();


CompressedFile.WriteCode(СlearCode);


CurStr=пустая строка;


while(не ImageFile.EOF()){ //Пока не конец файла


    C=ImageFile.ReadNextByte();


    if(CurStr+C есть в таблице)


        CurStr=CurStr+С;//Приклеить символ к строке


    else {


        code=CodeForString(CurStr);//code-не байт!


        CompressedFile.WriteCode(code);


        AddStringToTable (CurStr+С);


        CurStr=С; // Строка из одного символа


    }


}


code=CodeForString(CurStr);


CompressedFile.WriteCode(code);


CompressedFile.WriteCode(CodeEndOfInformation);

Как говорилось выше, функция InitTable() инициализирует таблицу строк так, чтобы она содержала все возможные строки, состоящие из одного символа. Например, если мы сжимаем байтовые данные, то таких строк в таблице будет 256 (“0”, “1”, ... , “255”). Для кода очистки (ClearCode) и кода конца информации (CodeEndOfInformation) зарезервированы значения 256 и 257. В рассматриваемом варианте алгоритма используется 12-битный код, и, соответственно, под коды для строк нам остаются значения от 258 до 4095. Добавляемые строки записываются в таблицу последовательно, при этом индекс строки в таблице становится ее кодом.

Функция ReadNextByte() читает символ из файла. Функция WriteCode() записывает код (не равный по размеру байту) в выходной файл. Функция AddStringToTable() добавляет новую строку в таблицу, приписывая ей код. Кроме того, в данной функции происходит обработка ситуации переполнения таблицы. В этом случае в поток записывается код предыдущей найденной строки и код очистки, после чего таблица очищается функцией InitTable(). Функция CodeForString() находит строку в таблице и выдает код этой строки.

Пример:

Пусть мы сжимаем последовательность 45, 55, 55, 151, 55, 55, 55. Тогда, согласно изложенному выше алгоритму, мы поместим в выходной поток сначала код очистки <256>, потом добавим к изначально пустой строке “45” и проверим, есть ли строка “45” в таблице. Поскольку мы при инициализации занесли в таблицу все строки из одного символа, то строка “45” есть в таблице. Далее мы читаем следующий символ 55 из входного потока и проверяем, есть ли строка “45, 55” в таблице. Такой строки в таблице пока нет. Мы заносим в таблицу строку “45, 55” (с первым свободным кодом 258) и записываем в поток код <45>. Можно коротко представить архивацию так:

  • “45” — есть в таблице;

  • “45, 55” — нет. Добавляем в таблицу <258>“45, 55”. В поток: <45>;

  • “55, 55” — нет. В таблицу: <259>“55, 55”. В поток: <55>;

  • “55, 151” — нет. В таблицу: <260>“55, 151”. В поток: <55>;

  • “151, 55” — нет. В таблицу: <261>“151, 55”. В поток: <151>;

  • “55, 55” — есть в таблице;

  • “55, 55, 55” — нет. В таблицу: “55, 55, 55” <262>. В поток: <259>;

Последовательность кодов для данного примера, попадающих в выходной поток: <256>, <45>, <55>, <55>, <151>, <259>.

Особенность LZW заключается в том, что для декомпрессии нам не надо сохранять таблицу строк в файл для распаковки. Алгоритм построен таким образом, что мы в состоянии восстановить таблицу строк, пользуясь только потоком кодов.

Мы знаем, что для каждого кода надо добавлять в таблицу строку, состоящую из уже присутствующей там строки и символа, с которого начинается следующая строка в потоке.

Алгоритм декомпрессии, осуществляющий эту операцию, выглядит следующим образом:

code=File.ReadCode();


while(code != СodeEndOfInformation){


    if(code = СlearСode) {


        InitTable();


        code=File.ReadCode();


        if(code = СodeEndOfInformation)


            {закончить работу};


        ImageFile.WriteString(StrFromTable(code));


        old_code=code;


    }


    else {


        if(InTable(code)) {


            ImageFile.WriteString(FromTable(code));


            AddStringToTable(StrFromTable(old_code)+


            FirstChar(StrFromTable(code)));


            old_code=code;


        }


        else {


            OutString= StrFromTable(old_code)+


            FirstChar(StrFromTable(old_code));


            ImageFile.WriteString(OutString);


            AddStringToTable(OutString);


            old_code=code;


        }


    }


}

Здесь функция ReadCode() читает очередной код из декомпрессируемого файла. Функция InitTable() выполняет те же действия, что и при компрессии, т.е. очищает таблицу и заносит в нее все строки из одного символа. Функция FirstChar() выдает нам первый символ строки. Функция StrFromTable() выдает строку из таблицы по коду. Функция AddStringToTable() добавляет новую строку в таблицу (присваивая ей первый свободный код). Функция WriteString() записывает строку в файл.

Замечание 1. Как вы могли заметить, записываемые в поток коды постепенно возрастают. До тех пор, пока в таблице не появится, например, в первый раз код 512, все коды будут меньше 512. Кроме того, при компрессии и при декомпрессии коды в таблице добавляются при обработке одного и того же символа, т.е. это происходит “синхронно”. Мы можем воспользоваться этим свойством алгоритма для того, чтобы повысить степень компрессии. Пока в таблицу не добавлен 512 символ, мы будем писать в выходной битовый поток коды из 9 бит, а сразу при добавлении 512 — коды из 10 бит. Соответственно декомпрессор также должен будет воспринимать все коды входного потока 9-битными до момента добавления в таблицу кода 512, после чего будет воспринимать все входные коды как 10-битные. Аналогично мы будем поступать при добавлении в таблицу кодов 1024 и 2048. Данный прием позволяет примерно на 15% поднять степень компрессии:

Замечание 2. При сжатии изображения нам важно обеспечить быстроту поиска строк в таблице. Мы можем воспользоваться тем, что каждая следующая подстрока на один символ длиннее предыдущей, кроме того, предыдущая строка уже была нами найдена в таблице. Следовательно, достаточно создать список ссылок на строки, начинающиеся с данной подстроки, как весь процесс поиска в таблице сведется к поиску в строках, содержащихся в списке для предыдущей строки. Понятно, что такая операция может быть проведена очень быстро.

Заметим также, что реально нам достаточно хранить в таблице только пару <код предыдущей подстроки, добавленный символ>. Этой информации вполне достаточно для работы алгоритма. Таким образом, массив от 0 до 4095 с элементами <код предыдущей подстроки; добавленный символ; список ссылок на строки, начинающиеся с этой строки> решает поставленную задачу поиска, хотя и очень медленно.

На практике для хранения таблицы используется такое же быстрое, как в случае списков, но более компактное по памяти решение — хэш-таблица. Таблица состоит из 8192 (213) элементов. Каждый элемент содержит <код предыдущей подстроки; добавленный символ; код этой строки>. Ключ для поиска длиной в 20 бит формируется с использованием двух первых элементов, хранимых в таблице как одно число (key). Младшие 12 бит этого числа отданы под код, а следующие 8 бит под значение символа.

В качестве хэш-функции при этом используется:

Index(key)= ((key >> 12) ^ key) & 8191;

Где >> — побитовый сдвиг вправо (key >> 12 — мы получаем значение символа), ^ — логическая операция побитового исключающего ИЛИ, & логическое побитовое И.

Таким образом, за считанное количество сравнений мы получаем искомый код или сообщение, что такого кода в таблице нет.

Подсчитаем лучший и худший коэффициенты компрессии для данного алгоритма. Лучший коэффициент, очевидно, будет получен для цепочки одинаковых байт большой длины (т.е. для 8-битного изображения, все точки которого имеют, для определенности, цвет 0). При этом в 258 строку таблицы мы запишем строку “0, 0”, в 259 — “0, 0, 0”, ... в 4095 — строку из 3839 (=4095-256) нулей. При этом в поток попадет (проверьте по алгоритму!) 3840 кодов, включая код очистки. Следовательно, посчитав сумму арифметической прогрессии от 2 до 3839 (т.е. длину сжатой цепочки) и поделив ее на 3840*12/8 (в поток записываются 12-битные коды), мы получим лучший коэффициент компрессии.

Упражнение: Вычислить точное значение лучшего коэффициента компрессии. Более сложное задание: вычислить тот же коэффициент с учетом замечания 1.

Худший коэффициент будет получен, если мы ни разу не встретим подстроку, которая уже есть в таблице (в ней не должно встретиться ни одной одинаковой пары символов).

Упражнение: Составить алгоритм генерации таких цепочек. Попробовать сжать полученный таким образом файл стандартными архиваторами (zip, arj, gz). Если вы получите сжатие, значит алгоритм генерации написан неправильно.

В случае, если мы постоянно будем встречать новую подстроку, мы запишем в выходной поток 3840 кодов, которым будет соответствовать строка из 3838 символов. Без учета замечания 1 это составит увеличение файла почти в 1.5 раза.

LZW реализован в форматах GIF и TIFF.

Характеристики алгоритма LZW:

Коэффициенты компрессии: Примерно 1000, 4, 5/7 (Лучший, средний, худший коэффициенты). Сжатие в 1000 раз достигается только на одноцветных изображениях размером кратным примерно 7 Мб.

Класс изображений: Ориентирован LZW на 8-битные изображения, построенные на компьютере. Сжимает за счет одинаковых подцепочек в потоке.

Симметричность: Почти симметричен, при условии оптимальной реализации операции поиска строки в таблице.

Характерные особенности: Ситуация, когда алгоритм увеличивает изображение, встречается крайне редко. LZW универсален — именно его варианты используются в обычных архиваторах.




- Начало -  - Назад -  - Вперед -